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Abstract

This paper proposes a fractional step method for the calculation of compressible Navier–Stokes equations. The purpose
of this study is to develop a robust and efficient numerical method for the simulation of low Mach number flows in which
the poorly distributed eigenvalues usually result in the numerical difficulties. The method takes advantage of the pressure-
based and the density-based methods. It thus accelerates the numerical convergence by adjusting the eigenvalues of the
Jacobian matrix. In order to control the numerical instability and the spurious wave reflections at the numerical bound-
aries, a characteristic boundary condition is formulated. This numerical method as well as the boundary condition treat-
ment extend the traditional fractional step method to the simulation of compressible Navier–Stokes equations. The
performance and the accuracy of the method to calculate the flows with large amplitude of acoustic waves and strong heat
transfer have been demonstrated by the direct numerical simulation of three distinct cases: a one-dimensional Euler equa-
tion with large amplitude of acoustic waves, an adiabatic turbulent boundary layer, and a turbulent boundary layer with
heated wall.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Traditional fractional step or projection methods for incompressible Navier–Stokes equations were intro-
duced by Chorin [1] and Temam [2] in the late 1960s. The reformulation of these methods by Kim and Moin
[3] in 1985 was a milestone in the development of computational fluid dynamics. After that, the fractional step
method has enjoyed widespread popularity in the simulation of incompressible flows because it provides an
efficient way to remove most of the computational difficulties arising from the low Mach number limit.
The main idea of fractional step method is to replace the singular matrix with some proper submatrices by
using a factorization technique. These submatrices can be solved easily because they have a better eigenvalue
distribution, thereby increasing the efficiency of numerical convergence. The success of the fractional step
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method in incompressible Navier–Stokes equations inspires us to seek an analogous algorithm to improve the
simulation of compressible Navier–Stokes equations.

In low Mach number flows, the influence of density fluctuations on the turbulence boundary layers is neg-
ligible as long as the mean density remains constant across the boundary layers [4]. Therefore, such flows can
be treated as incompressible flows and traditional fractional steps methods for incompressible flows can be
applied. However, the density varies with the distance from the wall once the heat transfer is involved. The
typical cases are the thermal turbulent boundary layers, which greatly affect the turbulent structures. As a
result, the mean velocity profiles will eventually be deformed even though the Mach number is small [5].
Huang et al. [6] and Nicoud and Bradshaw [5] suggested using some density-weighted transformations to mod-
ify the velocity profiles such that the similarity law of the incompressible flows can be applied to the turbulent
boundary layers with strong heat transfer. Under the circumstances that the heat transfer is not strong and the
amplitude of the acoustic waves is not large, the low Mach number flows can be approached by the incom-
pressible Navier–Stokes equations, while solving the overall compressible Navier–Stokes equations is an
option which is able to capture both compressibility and variable density effects [7].

Currently, there are three distinct methods for the simulation of the compressible Navier–Stokes equations
with a low Mach number: shifting operator methods [8], density-based methods [9–11] and the pressure-based
methods [12–14]. The main idea of the shifting operator methods is to adjust the eigenvalues by using the arti-
ficial viscous terms or diagonal matrices, for example, the LU-SGS scheme proposed by Yoon and Jameson
[8]. The disadvantage of the methods is that the acoustic modes may be damped. In the case the acoustic effects
are significant, these methods should be improved.

The density-based methods contain two classes: the preconditioning schemes and the asymptotic schemes.
Asymptotic schemes decompose the pressure into thermodynamic pressure and hydrodynamic pressure by
using the perturbation method [9]. This treatment will accelerate the convergence if the pressure fluctuations
are small. However, this assumption is usually violated by turbulence in which the pressure fluctuations have
the same order of magnitude with the velocity fluctuations [15]. The preconditioning schemes offer an easy,
efficient, and accurate way to calculate the compressible Navier–Stokes equations with a high Reynolds num-
ber under this circumstance. The preconditioning methods optimize the Jacobian matrix by using a left mul-
tiplier [10,11]. A well-designed preconditioning matrix will cluster the eigenvalues, which will eventually
accelerate the convergence.

The pressure-based methods [14,12,13] are analogous to the fractional step methods [3] for the incompress-
ible flows. Unlike the density-based methods, the pressure-based methods [3,14] adjust the Jacobian matrix by
using a factorization matrix. For low Mach number flows in which the compressibility effects are not negligi-
ble, the acoustic waves are transported with a speed significantly faster than the convective waves. As a result,
the time step of the traditional explicit schemes was limited to a very small value. To avoid the acoustic CFL
restriction, Wall et al. [14] proposed a semi-implicit scheme, in which velocity components and pressure were
staggered in time by one-half time step with respect to the scalar variables. This method prevented the artificial
damping of acoustic waves, in contrast to the LU-SGS scheme. Two differences between the fractional step
methods for the compressible Navier–Stokes equations and incompressible Navier–Stokes equations shall
be addressed: firstly, the pressure equation is a Poisson equation for the incompressible Navier–Stokes equa-
tions but a Helmholtz equation for the compressible Navier–Stokes equations [14]. Secondly, when the com-
pressibility and variable density effects become significant in the system, the energy equation should be solved
together with the momentum and continuity equations. The traditional fractional step methods cannot solve
the energy equation implicitly or semi-implicitly.

Furthermore, according to the Ostrowski-Reich theorem [16], the Gauss–Seidel scheme or SOR scheme
converges if and only if the Jacobian matrix is positive definite. However, this restriction is usually violated
by the low Mach number flows or incompressible flows, in which some eigenvalues may be negative or extre-
mely large. The negative eigenvalues will give rise to the divergence of some iterative schemes such as the
Gauss–Seidel scheme, Newton Gauss–Seidel scheme, or SOR scheme. In order to overcome this problem, this
paper proposes a method to optimize the distribution of eigenvalues of the Jacobian matrix by using a right
multiplier and a left multiplier. In other words, the method deduced by this paper is a combination of a pre-
conditioning method and a factorization treatment, or a combination of pressure-based and density-based
methods.
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The rest of this paper is organized as follows: In Section 2, we present the governing equations. The pre-
conditioning and the factorization methods will be addressed and analyzed in this section. In Section 3, the
numerical algorithm will be described in detail. A characteristic-based method for treating inflow and outflow
boundary conditions will be discussed in Section 4. And in Section 5, we will present the results of numerical
practises.

2. Governing equations and numerical solver

In this paper, variables are normalized as the following:
xi ¼
x�i

Lref

; ui ¼
u�i

U ref

; t ¼ t�

ðLref=U refÞ
; q ¼ q�

qref

p ¼ p�

qrefU
2
ref

; T ¼ T �

T ref

; e ¼ e�

U 2
ref

; l ¼ l�

lref

k ¼ k�

kref

; cv ¼
c�v

ðU 2
ref=T refÞ

; R ¼ R�

ðU 2
ref=T refÞ

; cp ¼
c�p

ðU 2
ref=T refÞ

ð1Þ
The reference Mach number is M ref ¼ U ref=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR�T ref

p
. As usual, the flows are assumed to be an ideal gas and

the non-dimensional equation of state is given by p = qRT. The non-dimensional coefficients of viscosity and
thermal conductivity are evaluated as: l = Ts, where s is assumed to be 0.71. The specific heats, cp and cv, are
considered constant. Hence, the governing equation is as follows:
oq
ot
þ oðqujÞ

oxj
¼ 0 ð2Þ

oðquiÞ
ot
þ oðquiujÞ

oxj
þ op

oxi
¼ orij

oxj
ð3Þ

oðqEÞ
ot
þ o½ðqE þ pÞuj�

oxj
¼ oðuirijÞ

oxj
�

oqj

oxj
ð4Þ
Here, E ¼ cvT þ 1
2
uiuj, rij ¼ 2l

Rer
Sij � 1

3
Skkdij

� �
, and qj ¼ �

cpl
Reref P r

oT
oxj

.

2.1. Discretization

The discretization of quantities is represented by the operator ½��n;mI;J ;K , where the superscript n stands for the
physical time step and m stands for the pseudo-time step; subscript I, J, and K are corresponding to the
streamwise, normal, and spanwise stations, respectively. For instance, ½U�n;mI ;J ;K is the value of function U in
the location I, J, K and at the moment n, m.

We let the discretization operator ½��n;mI;J ;K preserve the addition and multiplication laws. That is
½UþW�n;mI;J ;K ¼ Un;m
I;J ;K þWn;m

I ;J ;K ¼ ½U�
n;m
I ;J ;K þ ½W�

n;m
I ;J ;K ð5Þ
and
½U �W�n;mI;J ;K ¼ Un;m
I;J ;K �Wn;m

I ;J ;K ¼ ½U�
n;m
I ;J ;K � ½W�

n;m
I ;J ;K ð6Þ
(5) means that the discrete value of the summary of two functions is equal to the summary of their discrete
values. Also, (6) means that the discrete value of the multiplication of two functions is equal to the multipli-
cation of their discrete values.

Usually, to capture the turbulent structures at the low Mach number limit, the central difference scheme in
space and the fully implicit or semi-implicit scheme in time are recommended. In this study, the second order
central difference scheme was applied for the space derivative, and the second order Euler backward scheme
was utilized for the time derivative. For the sake of simplicity, the discretization of oU

ot ,
dU
dt

� �n;m

I;J ;K
, is given by
dU
dt

� �n;m

I ;J ;K

¼
3Un;m

I ;J ;K � 4Un�1;m
I ;J ;K þ Un�2;m

I ;J ;K

2Dt
ð7Þ
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Likewise, the discretization of oW
ox , dW

dx

� �n;m

I ;J ;K
, is given by
dW
dx

� �n;m

I ;J ;K

¼
Wn;m

Iþ1;J ;K �Wn;m
I�1;J ;K

2Dx
ð8Þ
To conduct the pseudo-time iteration, an operator dm is introduced which is defined by
½dmU�n;mI;J ;K :¼ ½U�n;mþ1
i;j;k � ½U�

n;m
i;j;k ð9Þ
where dmU is a variation of U in the pseudo-time direction. Owing to (6) and the definition (7)–(9), we have
dm
dU
dt

� �n;m

x;y;z

¼ d
dt

dmU

� �n;m

x;y;z

ð10Þ

dm
dU
dxi

� �n;m

x;y;z

¼ d
dxi

dmU

� �n;m

x;y;z

ð11Þ

W
dU
dx

� �n;m

I;J ;K

¼ ½W�n;mI ;J ;K

dU
dx

� �n;m

I ;J ;K

ð12Þ
Since the mathematical rigor is not the focus of this paper, the detailed proofs about equalities (10)–(12) are
neglected here.

2.2. Discretization of the governing equations

Thus, the discretization of the system (2)–(4) is given by
dq
dt

� �n;mþ1

I ;J ;K

þ dðqujÞ
dxj

� �n;mþ1

I ;J ;K

¼ 0 ð13Þ

dðquiÞ
dt

� �n;mþ1

I ;J ;K

þ dðquiujÞ
dxj

� �n;mþ1

I;J ;K

þ dp
dxi

� �n;mþ1

I;J ;K

¼ drij

dxj

� �n;m

I ;J ;K

ð14Þ

dðqEÞ
dt

� �n;mþ1

I;J ;K

þ d½ðqE þ pÞuj�
dxj

� �n;mþ1

I ;J ;K

¼ dðuirijÞ
dxj

� �n;m

I ;J ;K

�
dqj

dxj

� �n;m

I ;J ;K

ð15Þ
Above governing equations are fully implicit with respect to the physical time step n. Therefore, a pseudo-time
iteration should be employed for solving the variables. When the pseudo-time iteration converges, both of the
states ½��n;mþ1

I ;J ;K and ½��n;mI ;J ;K will approach the state ½��n;1I ;J ;K . In this manner, the distinction between the state ½��n;mþ1
I ;J ;K

and ½��n;mI;J ;K is negligible, provided m is large enough and the pseudo-time iteration converges. The pseudo-time
iteration will be stopped at the moment that a threshold is reached. For simplification, we denote ½��n;1I;J ;K by ½��nI;J ;K .

By using (9), Eqs. (13)–(15) end up with
dm
oq
ot

� �n;m

I;J ;K

þ dm
dðqujÞ

dxj

� �n;m

I;J ;K

¼ �½F 1�n;mI ;J ;K ð16Þ

dm
dðquiÞ

dt

� �n;m

I ;J ;K

þ dm
dðquiujÞ

dxj

� �n;m

I;J ;K

þ dm
dp
dxi

� �n;m

I;J ;K

¼ �½F iþ1�n;mI;J ;K ð17Þ

dm
dðqEÞ

dt

� �n;m

I ;J ;K

þ dm
d½ðqE þ pÞuj�

dxj

� �n;m

I;J ;K

¼ �½F 5�n;mI ;J ;K ð18Þ
Here, i; j ¼ 1; 2; 3 and
� ½F 1�n;mI;J ;K ¼ �
dq
dt

� �n;m

I ;J ;K

� dðqujÞ
dxj

� �n;m

I ;J ;K

ð19Þ

� ½F iþ1�n;mI ;J ;K ¼ �
dðquiÞ

dt

� �n;m

I;J ;K

� dðquiujÞ
dxj

� �n;m

I ;J ;K

� dp
dxi

� �n;m

I ;J ;K

þ drij

dxj

� �n;m

I ;J ;K

ð20Þ

� ½F 5�n;mI;J ;K ¼ �
dðqEÞ

dt

� �n;m

I;J ;K

� d½ðqE þ pÞuj�
dxj

� �n;m

I ;J ;K

þ dðuirijÞ
dxj

� �n;m

I ;J ;K

�
dqj

dxj

� �n;m

I ;J ;K

ð21Þ
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Let
Q1 ¼
d
dt

dmqþ d
dxj

dmðqujÞ ð22aÞ

Qiþ1 ¼
d
dt

dmðquiÞ þ
d

dxj
dmðquiujÞ þ

d
dxi

dmp ð22bÞ

Q5 ¼
d
dt

dmðqEÞ þ d
dxj

dm½ðqE þ pÞuj� ð22cÞ
Eqs. (16)–(18) become
Q½ �n;mI ;J ;K ¼ �½F �
n;m
I ;J ;K ð23Þ
2.3. Numerical solver

The best-known and widely applied method for the nonlinear equation is the Quasi-Newton method, which
provides a global convergence and enables us to calculate complex Navier–Stokes equations with a rough ini-
tial guess. The main idea of the Quasi-Newton method is to achieve a Cauchy sequence of the numerical solu-
tions by solving the corresponding linearized system called the Jacobian equation. In this study, Newton
method is employed for the pseudo-time iteration.

Denote dmv by ½dmP ; dmu1; dmu2; dmu3; dmT �T. The vector Q can be represented as
Q ¼ Jdmv
where J is the Jacobian matrix given by
J ¼

1
RT

D
Dt

P
RT

d
dx1

P
RT

d
dx2

P
RT

d
dx3

� P
RT 2

D
Dt

u1

RT
D
Dt þ d

dx1

P
RT u1

d
dx1
þ D

Dt

	 

Pu1

RT
d

dx2

Pu1

RT
d

dx3
� Pu1

RT 2
D
Dt

u2

RT
D
Dt þ d

dx2

Pu2

RT
d

dx1

P
RT u2

d
dx2
þ D

Dt

	 

Pu2

RT
d

dx3
� Pu2

RT 2
D
Dt

u3

RT
D
Dt þ d

dx3

Pu3

RT
d

dx1

Pu2

ReT d
dx2

P
RT u3

d
dx3
þ D

Dt

	 

� Pu3

RT 2
D
Dt

H
RT

D
Dt � o

ot
P

RT H d
dx1
þ u1

D
Dt

	 

P

RT H d
dx2
þ u2

D
Dt

	 

P

RT H d
dx3
þ u3

D
Dt

	 

� PðH�CpT Þ

RT 2
D
Dt

2666666666664

3777777777775

Here, H ¼ CpT þ 1

2
ðu2

1 þ u2
2 þ u2

3Þ ¼ E þ P
q ;R ¼

c
M2, and D

Dt ¼ d
dt þ ui

d
dxi

is the discretization of the material
derivative.

In this study, all of the terms are implicit in terms of the physical time steps, but the viscous terms are trea-
ted explicitly in the pseudo-time iteration. This treatment is based on three considerations: firstly, keeping the
viscous terms in the Jacobian matrix will cause the difficulty on the analysis of eigenvalues. Secondly, for the
simulation of turbulence, which is usually associated with a large Reynolds number, the influence of viscous
terms on the numerical stability of pseudo-time iteration is negligible. At last, once the pseudo-time iteration
convergence, the errors produced by the terms which are lagged in the pseudo-time steps are negligible. With
the Quasi-Newton method, Jacobian matrix shall be adjusted by a preconditioning and a factorization tech-
nique. The main implements are proposed as follows.

2.4. Preconditioning

When a Newton-like method is used, governing equations can be simplified as
½Jdmv�n;mI ;J ;K ¼ �½F �
n;m
I ;J ;K ð24Þ
Clearly, the Jacobian matrix J can be decomposed as
J :¼ C
3

2Dt
þ A

d
dx1

þ B
d

dx2

þ C
d

dx3
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In general, matrices A;B, and C are not diagonally dominant. For accelerating the numerical convergence,
we suggest adjusting the eigenvalues of matrix J by using a left multiplier P and right multiplier M so that
the resolved matrices can maintain diagonal dominance and be positive definite. Thus, an improved solver
is:
½P�n;mI;J ;K ½JMM�1dmv�n;mI;J ;K ¼ �½P�
n;m
I ;J ;K ½F �

n;m
I;J ;K ð25Þ
By using Eq. (6), it yields
½PJMM�1dmv�n;mI;J ;K ¼ �½PF �n;mI ;J ;K ð26Þ
The left multiplier P is essentially a preconditioning matrix, while the right multiplier M implements a
factorization.

The preconditioning matrix proposed by Pletcher and Chen [10] is utilized in this paper. It is
P ¼

q
Cv

� u1

Cv
� u2

Cv
� u3

Cv

1
Cv

� RTu1

P
RT
P 0 0 0

� RTu2

P 0 RT
P 0 0

� RTu3

P 0 0 RT
P 0

RT
P

q
Cv
� T

	 

� RTu1

PCv
� RTu2

PCv
� RTu3

PCv

RT
PCv

0BBBBBBBB@

1CCCCCCCCA
ð27Þ
where
q ¼ ðu
2
1 þ u2

2 þ u2
3Þ

2

Taking a left multiplication to both sides of Eq. (24) via the above preconditioning matrix, it yields
PJdmv ¼

1
R

D
Dt b d

dx1
b d

dx2
b d

dx3
0

e d
dx1

D
Dt 0 0 0

e d
dx2

0 D
Dt 0 0

e d
dx3

0 0 D
Dt 0

0 TR
Cv

d
dx1

TR
Cv

d
dx2

TR
Cv

d
dx3

D
Dt

0BBBBBBBBB@

1CCCCCCCCCA

dmP

dmu1

dmu2

dmu3

dmT

0BBBBBB@

1CCCCCCA ¼ �PF ð28Þ
where b ¼ P
Rþ P

Cv
; e ¼ TR

P , and c ¼ TR
Cv

. Such a preconditioning matrix offers us two advantages. Firstly, it trans-

fers the large off-diagonal terms into the diagonal part so that the numerical scheme becomes more robust no
matter how small the Mach number is. Secondly, this preconditioning technique enables us to decouple the
temperature variance and velocity variance in the Jacobian matrix.

Without the preconditioning, the eigenvalues of the Jacobian matrix are ui and ui ± c where
c ¼

ffiffiffiffiffiffiffiffiffi
cRT
p

is acoustic speed. But the eigenvalues with preconditioning become ui and

uið1þ RÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i ðR� 1Þ2 þ 4Rc2

q� ��
ð2RÞ. Obviously, these eigenvalues cluster near 1. But it is still possible

for them to be zero or negative. The appearance of negative eigenvalues results in the loss of the positive def-
initeness. Such non-positive eigenvalues are usually associated with the numerical difficulty for the Quasi-
Newton solvers, and may even cause the divergence of the iterative scheme. Therefore, a proper factorization
technique will be needed.
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2.5. Fractional step factorization

Denote the matrix M�1 in Eq. (26) by
M�1 ¼

1
R

D
Dt � b d

dxi

D
Dt

	 
�1

e d
dxi

0 0 0 0

D
Dt

	 
�1

e d
dx1

1 0 0 0

D
Dt

	 
�1

e d
dx2

0 1 0 0

D
Dt

	 
�1

e d
dx3

0 0 1 0

� D
Dt

	 
�1

c d
dxi

D
Dt

	 
�1

e d
dxi

0 0 0 1

266666666666664

377777777777775
ð29Þ
Substitute (29) into the identity (26); thus, Eq. (28) is immediately followed by
1 b d
dx1

b d
dx2

b d
dx3

0

0 D
Dt 0 0 0

0 0 D
Dt 0 0

0 0 0 D
Dt 0

0 c d
dx1

c d
dx2

c d
dx3

D
Dt

2666666664

3777777775

1
R

D
Dt � b d

dxi

D
Dt

	 
�1

e d
dxi

0 0 0 0

D
Dt

	 
�1

e d
dx1

1 0 0 0

D
Dt

	 
�1

e d
dx2

0 1 0 0

D
Dt

	 
�1

e d
dx3

0 0 1 0

� D
Dt

	 
�1

c d
dxi

D
Dt

	 
�1

e d
dxi

0 0 0 1

266666666666664

377777777777775
dmv

266666666666664

377777777777775

n;m

I;J ;K

¼ �½PF �n;mI ;J ;K ð30Þ
where b ¼ P
Rþ P

Cv
; e ¼ TR

P , and c ¼ TR
Cv

. Note that the second matrix on the left of (30) is M�1, and the first matrix
thus is PJM.

This factorization provides a way to decompose variance dmP, dmui, and, dmT. By choosing a proper time
step Dt, the eigenvalues of matrix PJM and M�1 can be guaranteed to be positive and cluster near 1, and
hence meet the requirement of the convergence of iterative procedures.
3. Numerical procedure

In the identity (30), D
Dt

	 
�1

stands for the inverse operator of the material derivative. In [3], Kim and Moin

used Dt to replace D
Dt

	 
�1

. Choi and Moin [18] found that the time difference Dt can be up to 0.4 without reduc-

ing the accuracy in their simulation of turbulence channel flow. By a conservative scheme, Ham et al. [19]
obtained accurate results using a time step as lager as 1.6. Theoretical analysis of this implementation was
given by Perot [17] and Lee et al. [20].

In this study, we follow this idea and replace D
Dt

	 
�1

by Dt. Thus, the discretization of identity (30) becomes
1 b d
dx1

b d
dx2

b d
dx3

0

0 D
Dt 0 0 0

0 0 D
Dt 0 0

0 0 0 D
Dt 0

0 c d
dx1

c d
dx2

c d
dx3

D
Dt

2666666664

3777777775

1
R

D
Dt � Dtb d

dxi
e d

dxi
0 0 0 0

Dte d
dx1

1 0 0 0

Dte d
dx2

0 1 0 0

Dte d
dx3

0 0 1 0

�Dt2c d
dxi

e d
dxi

0 0 0 1

2666666664

3777777775
dmv

2666666664

3777777775

n;m

I ;J ;K

¼ �½PF �n;mI ;J ;K ð31Þ
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In summary, the resolved equations suggested by this paper are given by
1 b d
dx1

b d
dx2

b d
dx3

0

0 D
Dt 0 0 0

0 0 D
Dt 0 0

0 0 0 D
Dt 0

0 c d
dx1

c d
dx2

c d
dx3

D
Dt

0BBBBBBBB@

1CCCCCCCCA
dmW i

2666666664

3777777775

n;m

I;J ;K

¼ �½PF �n;mI ;J ;K ð32Þ
and
1
R

D
Dt � Dtb d

dxi
e d

dxi
0 0 0 0

Dte d
dx1

1 0 0 0

Dte d
dx2

0 1 0 0

Dte d
dx3

0 0 1 0

�ðDtÞ2c d
dxi

e d
dxi

0 0 0 1

0BBBBBBB@

1CCCCCCCA
dmv

266666664

377777775

n;m

I;J ;K

¼ ½dmW i�n;mI;J ;K
Such a decomposition, essentially, is a fractional step procedure. The corresponding numerical procedure
follows:

Algorithm 1 (New Fractional Step Method)

1: Give an initial guess of ½ui��1
I ;J ;K ; ½p�

�1
I ;J ;K ; ½T �

�1
I;J ;K . Let n = 1, m = 1, and
½ui�n;mI ;J ;K ¼ ½ui�0I ;J ;K ¼ ½ui��1
I;J ;K

½p�n;mI ;J ;K ¼ ½p�
0
I;J ;K ¼ ½p�

�1
I ;J ;K

½T �n;mI;J ;K ¼ ½T �
0
I;J ;K ¼ ½T �

�1
I ;J ;K
where i ¼ 1; 2; 3.
2: Calculate Eqs. (19)–(21) for ½F �n;mI ;J ;K , and then compute ½PF �n;mI;J ;K , where P is given by the identity (27) and
½PF �n;mI ;J ;K ¼ ½P�
n;m
I ;J ;K ½F �

n;m
I;J ;K
which follows the formula (6). Decide to go to the next physical time step or not, according to the mod-
ulus of ½F �n;mI ;J ;K .

3: Determine dmW2, dmW3, and dmW4 by solving the equation
D
Dt 0 0

0 D
Dt 0

0 0 D
Dt

0BB@
1CCA

dmW 2

dmW 3

dmW 4

0B@
1CA

2664
3775

n;m

I;J ;K

¼
�PF 2

�PF 3

�PF 4

0B@
1CA

264
375

n;m

I;J ;K

ð33Þ
The discretization of the material derivative, D
Dt ¼ d

dt þ ui
d

dxi
, is implemented in this study.

4: Calculate dmW1 and dmW5 by
½dmW 1�n;mI;J ;K ¼ �PF 1 � b
d

dxi
dmW i

� �n;m

I ;J ;K

; ð34Þ

D

Dt
dmW 5

� �n;m

I;J ;K

¼ Dt �PF 5 � c
d

dxi
dmW i

� 
� �n;m

I ;J ;K

ði ¼ 1; 2; 3Þ ð35Þ
5: Determine dmP by solving the equation
1

R
D

Dt
� bDt

d
dxi

e
d

dxi

� 

dmP

� �n;m

I ;J ;K

¼ ½dmW 1�n;mI ;J ;K ð36Þ
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6: Calculate the velocity variance dmui by
½dmui�n;mI;J ;K ¼ dmW iþ1 � Dte
d

dxi
dmP

� �n;m

I ;J ;K

ði ¼ 1; 2; 3Þ ð37Þ
7: Calculate the temperature variance dmT by
½dmT �n;mI ;J ;K ¼ dmW 5 þ Dt2c
d

dxi
e

d
dxi

dmP
� �n;m

I ;J ;K

ði ¼ 1; 2; 3Þ ð38Þ
8: Renew ui, p, and T with ui + dui, p + dP , and T + dT, respectively. Let m = m + 1. And then go back to
step 2.

As an eight-step procedure, the resolution of steps 3, 4 and 5 requires proper iterative procedures, but the
rest can be solved by only one step. For steps 3 and 4, since D

Dt is the discretization of the material derivative, a
small enough time step Dt can ensure the diagonal dominance, which essentially guarantees the convergence of
the iteration. In this study, LU decomposition on the whole matrix was utilized for solving (33) and (35). Eq.
(37) is the Helmholtz equation as in the Wall et al.’s method [14].

Considering that the determinant of preconditioning matrix P is R4T 5

P 4Cv
, which is bounded above and below for

most of flows, the convergence of matrix P~F , thus, is equivalent to the convergence of ~F . In this sense, either ~F
or P~F can be used to determine the stop of the iterative procedure in step 2.

4. Characteristic boundary conditions

The preceding section describes a new fractional step method for solving the compressible Navier–Stokes
equations. An appropriate treatment for the boundary condition associated with this numerical method needs
to be constructed. In the simulation of compressible flows, characteristic-based boundary conditions [21] have
been widely utilized. The method is remarkably effective in the controlling of numerical instabilities and in
removing spurious wave reflections at the computational boundary. But the traditional characteristic bound-
ary treatment needs to be altered as long as preconditioning is applied because the preconditioning matrix
changes the eigenvalues and eigenvectors.

Let us consider a boundary located at x1 = L. Multiplying the governing Eqs. (2)–(4) by the precondition-
ing matrix (27) yields
oW
ot
þ A

oW
ox1

þ B
oW
ox2

þ C
oW
ox3

� Vis: ¼ 0
where Vis. is the viscous term, W ¼ ½P ; u1; u2; u3; T �T,
A ¼

u1

R
P
Rþ P

Cv
0 0 0

TR
P u1 0 0 0

0 0 u1 0 0

0 0 0 u1 0

0 TR
Cv

0 0 u1

0BBBBBB@

1CCCCCCA

and
B ¼

u2

R 0 P
Rþ P

Cv
0 0

0 u2 0 0 0
TR
P

0 u2 0 0

0 0 0 u2 0

0 0 TR
Cv

0 u2

0BBBBBB@

1CCCCCCA; C ¼

u3

R 0 0 P
Rþ P

Cv
0

0 u3 0 0 0

0 0 u3 0 0
TR
P

0 0 u3 0

0 0 0 TR
Cv

u3

0BBBBBB@

1CCCCCCA
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Referring to the appendix, the eigenvalues of A are the following:
k1 ¼ u1ð1þ RÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1ðR� 1Þ2 þ 4R2T 1þ R
Cv

� 
s" #,
ð2RÞ

k2 ¼ u1ð1þ RÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1ðR� 1Þ2 þ 4R2T 1þ R
Cv

� 
s" #,
ð2RÞ
k3 = u1, k4 = u1, and k5 = u1. Define a 5 · 5 diagonal matrix K by
K ¼ diag½k1; k2; k3; k4; k5�

A can be split as
A ¼ QKR
where
Q ¼

q11 q12 0 0 0

q21 q22 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 0 0 1

0BBBBBB@

1CCCCCCA; R :¼ Q�1 ¼

p11 p12 0 0 0

p21 p22 0 0 0

0 0 1 0 0

0 0 0 1 0

p51 p52 0 0 1

0BBBBBB@

1CCCCCCA

The definition of the entries are given in the appendix.

If we denote KR oW
ox1

by Li, it yields
L1 ¼ k1 p11

oP
ox1

þ p12

ou1

ox1

� 

ð39Þ

L2 ¼ k2 p21

oP
ox1

þ p22

ou1

ox1

� 

ð40Þ

L3 ¼ k3

ou2

ox1

ð41Þ

L4 ¼ k4

ou3

ox1

ð42Þ

L5 ¼ k5 p51

oP
ox1

þ p52

ou1

ox1

þ oT
ox1

� 

ð43Þ
where Li are the amplitude of characteristic waves associated with each characteristic velocity ki. Unlike the
traditional characteristic system, the propagation waves corresponding to L1 and L2 will no longer be the
acoustic waves. By using these Li,
A
oW
ox1

¼

q11L1 þ q12L2

q21L1 þ q22L2

L3

L4

L3 þ L4 þ L5

26666664

37777775

It is known that the upstream-propagating waves are associated with the negative eigenvalues, and the down-
stream-propagating waves are associated with the positive eigenvalues. In order to control the spurious wave
reflections and achieve numerical stability, the forward scheme is recommended for the downstream-propagat-
ing waves and the backward scheme is recommended for the upstream-propagating waves. Without loss of
generality, assume k1 6 0 and k2 P 0. Thus,
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L1 ¼ k1 p11

P Iþ1;j;k � P I;j;k

Dx1

þ p12

u1Iþ1;j;k � u1I ;j;k

Dx1

� 


and
L2 ¼ k2 p21

P I ;j;k � P I�1;j;k

Dx1

þ p22

u1I ;j;k � u1I�1;j;k

Dx1

� 


Since the numerical boundary condition must be given in order to calculate Li, Poinsot and Lele [21] suggested
a series of methods to evaluate these Li. But these need to be modified since the preconditioning is applied.

4.1. Outlet characteristic boundary conditions for subsonic flows

We discuss the outlet boundary condition for the subsonic flows here. Clearly, k2, k3, k4, and, k5 are posi-
tive. Hence, L2, L3, L4, and, L5 are calculated by the backward difference. But L1 must be specified. Poinsot
and Lele [21] suggested applying
L1 ¼ rð1�M2ÞðP � P1Þc=L
where M is the maximum Mach number in the flow, c is the acoustic speed, L is the characteristic size of the
domain, and r is a constant. Clearly, the transfer of numerical information in the system with preconditioning
is not carried by the acoustic wave, but by an upstream-propagating wave with an eigenvalue k1 satisfying
jk1j < ju1 � cj. Hence, directly using the L1 proposed by Poinsot and Lele [21] in this system will overestimate
the speed of upstream-propagating waves. Certainly, it is not an optimum choice for the system with precon-
ditioning. For the subsonic flow, R ¼ c

M2
1
> 1, 	 

k1 ¼ u1ð1þ RÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1ðR� 1Þ2 þ 4R2T 1þ R
Cv

� 
s" #,
ð2RÞ ¼

u2
1

R � T 1þ R
Cv

u1
1þR
2R

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1
R�1
2R

� �2 þ T 1þ R
Cv

	 
r

¼ �
T 1þ R

Cv

	 

u1

1þR
2R

� � 1� u2
1
CveT RðCvþRÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T 1þ R

Cv

	 
.
u2

1
R�1
2R

� �2
h ir

2664
3775 ¼ �2a

T ðCv þ RÞR
u1ð1þ RÞCv
where a 2 ð0; 1Þ. We therefore suggest that
L1 ¼
rð1�M2ÞðP � P1Þ

L
T1ðCv þ RÞR
u11 ð1þ RÞCv
where u11 is the free stream streamwise velocity and T1 is the free stream temperature. r is suggested to be
0.25.

5. Numerical practices

For the low Mach number flows in which the compressibility or variable density effects are not negligible,
the compressible Navier–Stokes equations rather than the incompressible Navier–Stokes equations should be
solved. The variable density effects are often associated with the strong heat transfer. For the low Mach num-
ber thermal turbulent boundary layers, the variable density effects instead of the compressibility effects are sig-
nificant. In such flows, the pressure change is small but the heat transfer is strong. The coupling between the
density and temperature need to be well treated. Usually, the low Mach number flows are incompressible.
However, when the acoustic waves have a large amplitude, the low Mach number flows may present a strong
compressibility. Under this circumstance, the coupling between the pressure and density will cause the numer-
ical difficulties. (For details, refer to [14].)

Thus, to validate the method, a one-dimensional Euler equation with the large amplitude acoustic waves at
a Mach number of 0.02, an adiabatic turbulent boundary layer at a Mach number of 0.06, and a turbulent
boundary layer with heated wall at the Mach number of 0.06 are calculated by using the direct numerical sim-
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ulations. For both turbulent boundary layers, the free stream pressure gradient is zero. Owing to the large
amplitude acoustic waves, the compressibility effects are dominant in the first case.

5.1. A one-dimensional Euler equation

As we know, the magnitude of the sound speed for the low Mach number compressible flows is much larger
than the convective velocity u. It is hard to converge the code under this circumstance. For testing the prop-
erties of the method at the low Mach number limit, a one-dimensional Euler equation,
oq
ot
þ u

oq
ox
þ q

ou
ox
¼ 0 ð44Þ

oðquÞ
ot
þ oðqu2Þ

ox
¼ � op

ox
ð45Þ

oðqEÞ
ot
þ o½ðqE þ pÞu�

ox
¼ 0 ð46Þ
was calculated by the present method. The calculated Mach number M0 was chosen as 0.02. Clearly, Eqs.
(44)–(46) form a hyperbolic system. The unsteady structures are transported to the downstream or upstream
via the convective or acoustic waves. The characteristic line method enable us to anticipate the propagations of
these convective and acoustic waves. The rearrangement of terms in Eqs. (44)–(46), based on the idea of the
characteristic lines, results in the following equations:
op
ot
þ ðu� cÞ op

ox
¼ qc

ou
ot
þ qcðu� cÞ ou

ox
ð47Þ

oq
ot
þ u

oq
ox
¼ 1

c2

op
ot
þ u

c2

op
ox

ð48Þ

op
ot
þ ðuþ cÞ op

ox
¼ �qc

ou
ot
� qcðuþ cÞ ou

ox
ð49Þ
where c is the sound speed given by c ¼
ffiffiffiffiffiffiffiffiffi
cRT
p

. (For details, refer to [21]).
The quantities were normalized by the reference system proposed by Section 2. The dimensionless initial

velocity and density were 1.0. The dimensionless initial pressure was P(x) = P0, where P 0 ¼ 1
cM2

0

. At x = 0,

the velocity was specified to vary sinusoidally in time about a mean value, more precisely,
u(0) = 1.0 + 0.2sin(t), while density was specified to be constant. At x = 800, the pressure was specified to
be a sinusoidal function, where P(800) = P0 + 0.08P0 sin(t). The numerical domain was from 0 to 800. The
ratio of the amplitude of the pressure oscillation at x = 800 to the amplitude of the velocity oscillation at

x = 0 was 0:08
cM2

0

=0:2 ¼ 1607:14. Thus, the acoustic waves were much faster than the convective waves. Such a

large amplitude acoustic wave usually results in numerical instability. It slows the numerical convergence
and even causes the divergence of the code.

The above case was calculated by four distinct methods: a semi-implicit pressure-based method proposed
by Wall et al. [14], a density-based method [24], a characteristic line method, and the present method. Note
that the variables are assumed to be constant along the characteristic direction by the characteristic line
method. Thus, an explicit scheme of Eqs. (47)–(49) could be utilized to obtain the solution by means of char-
acteristic line method. In summary, a second order central difference for the space derivative was implemented
for all of these four methods. The first order forward difference in time was utilized for the characteristic line
method, while the second order Euler backward difference in time was implemented for the others. Dx = 0.1
and Dt ¼ 0:2

1þ1=M0
Dx for the characteristic line method, but Dx = 2 and Dt = 0.1 for the rest. CFL number was

0.2u for the characteristic line method, but 2.55u for the rest cases. Since the rest method were implicit or semi-
implicit scheme, the large CFL number can be applied.

Fig. 1 shows the convergent history of the maximum residual errors by the present method and the
semi-implicit pressure-based method [14]. Both of the methods solved the pressure Helmholtz equation.
The eigenvalues of the Jacobian matrix was adjusted by using the preconditioning matrix for the present
scheme. The results reveal that a better distribution of the eigenvalues allows a high performance of the
convergence.
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Figs. 2 and 3 plot the velocity and pressure distribution calculated by four different methods at the
moment T = 1000, respectively. The amplitude of velocity in the downstream was significantly enlarged
by the acoustic waves, although it was only 0.2 in the inlet. This phenomena was captured by the
semi-implicit pressure-based method [14], characteristic line method, and the present method. However,
by using the LU-SGS method [24], the large amplitude acoustic waves were damped by the artificial
dissipative terms, even though the preconditioning technique was implemented. Since the amplitude of
the pressure oscillation at the outlet was too large. In order to converge the code, we had to add a large
artificial dissipative term in the case of the LU-SGS method. Owing to this, our calculation by using
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LU-SGS method did not capture the coupling between the pressure and velocity. The results reveal that
the artificial damping may not be a good method for the simulation of the low Mach number flows with
large amplitude acoustic waves.

In summary, the present method which solves the pressure Helmholtz equation can capture the large ampli-
tude acoustic waves for the low Mach number flows. Moreover, it converges faster than the pressure-based
method because it takes the advantage of the density-based method and has a better distribution of eigen-
values than the pressure-based method [14].

5.2. Turbulent boundary layers

In order to demonstrate this numerical method, the turbulent boundary layers with or without heat transfer
were calculated by the proposed method. The calculated Reynolds number was from approximately 1800–
2200 in terms of displacement thickness. The Prandtl number was 0.71. Direct numerical simulation (DNS)
was implemented.

A second order central difference finite volume scheme was applied. The second order Euler backward
scheme was utilized on the time difference. A fully implicit scheme was implemented. The numerical procedure
included two loops: an inner loop and an outer loop.

A recycling and rescaling inlet condition proposed by Liu and Pletcher [22] was utilized for the velocities
and temperature. The inlet pressure was extrapolated from the interior. On the upper boundary, the pressure
and temperature were specified as free stream. The numerical mesh was 350 · 90 · 192 in the streamwise, nor-
mal, and spanwise directions, respectively. The mesh was uniform in the streamwise and spanwise directions
and stretched in the normal direction, where Dxþ ¼ 20:0;Dzþ ¼ 6:7;Dyþmin ¼ 0:3;Dyþmax ¼ 65.

A random function was used to generate the initial fluctuations. And the Blasius profile was used as the
initial mean profile. The characteristic boundary conditions proposed in this paper were applied at the
outlet.

5.2.1. Case2: Adiabatic turbulent boundary layer

The first case was a flow at a Mach number of 0.06, a level at which a traditional compressible scheme
would experience very poor convergence or even divergence.
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The first and second order statistics at Red = 2000 were shown in Figs. 4 and 5, respectively. The compared
DNS results were calculated by Spalart [15] and experiment data were reported by DeGraaff and Eaton [23].
We found a fairly close agreement between our DNS results and previous data.

Fig. 6 plots the turbulent kinetic energy budget. The turbulent kinetic energy budget reveals the detailed
information and mechanism of the turbulence. The governing equation for the turbulent kinetic energy budget
is given by
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ok
ot
þ Uk

ok
xk
¼ P ii þ T ii þ Dii þPii � eii ð50Þ
where k ¼ huiuii
2

, Pii is the turbulent production tensor, Tii is the turbulent transport tensor, Dii is the viscous
dissipation tensor, Pii is the velocity pressure gradient tensor, and eii is the turbulent dissipation tensor.
The representation of those terms are given by,
P ii ¼ �2huiuki
oUi

oxk
; eii ¼ 2m

oui

oxk

oui

oxk

� �
; T ii ¼ �

ouiuiuk

oxk

� �
; Pii ¼ �

2

q
ui

op
oxi

� �
; Dii ¼ mDhuiuii
The numerical results was compared with Spalart’s data [15]. The agreement is fairly good.

5.2.2. Case3: Turbulent boundary Layer with heat transfer
In the third case, turbulent boundary layer developing over a heated wall was simulated. The wall temper-

ature Twall was fixed at 1.4Te, where Te is the environment temperature. The calculated Mach number was
0.06. Wall properties were used to normalize the quantities. A density-weighted transformation proposed
by Huang, Bradshaw, and Coakley [6] was utilized to compute a modified velocity, which was
U c ¼
ffiffiffi
B
p

sin�1 Aþ u
D

� 

� sin�1 A

D

� 
� �
ð51Þ
where
A ¼ qw=sw; B ¼ 2Cp1T w

Prt
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B

p

subscript w stands for the wall property, and subscript1 stands for the free stream property. Fig. 7 shows the
comparison of modified velocity Uc and u+ with experimental results of incompressible turbulent boundary
layer. This figure verifies that in the boundary layer with heated wall the velocity profiles are deformed due
to the change of the density across the boundary layer. Such a deformation causes the u+ to depart from
the law of the wall. But the modified velocity Uc maintains the law of the wall for the incompressible flow.
These numerical results match the theoretical and experimental conclusions of [6].
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The calculated mean temperature profile for the turbulent boundary layer with Tw/T1 = 1.4 is presented by
Fig. 7 also. The square symbols are the empirical mean temperature profile suggested by Kadar [25], which
followed:
hþ ¼ Pryþ expð�CÞ þ 2:12 ln ð1þ yþÞ 2:5ð2� y=dÞ
1þ 4ð1� y=dÞ2

" #
þ bðPrÞ

( )
expð�CÞ
where hþ ¼ T w�T
tf
; tf ¼ qw

qwCpus
, and,
C ¼ 0:01ðPryþÞ4

1þ 5Pr3yþ
; bðPrÞ ¼ ð3:85ðPrÞ�1=3 � 1:3Þ2 þ 2:12 ln Pr
The present result agrees with the Kadar’s formula [25] in the viscous sublayer and logarithmic layer.
Since the density and temperature varied with the distance from the wall, in order to describe the influence

of the temperature on the statistics of the turbulent fluctuations, we normalized the rms of the streamwise
velocity fluctuations in three different ways. Fig. 8 shows the comparison of the rms of the streamwise velocity
fluctuations. The results shown by the dash-dotted line were normalized by the wall properties, where
Uþrms ¼ U rms

U s;w
and Y þ ¼ Y U s;w

mw
. It matches with DeGraaff and Eaten’s incompressible data [23] in the outer part

of turbulent boundary layer. The dash line results were normalized by the global properties, where Uþrms ¼ U rms

Us;1
and Y þ ¼ Y U s;1

m1
. This curve is close to DeGraaff and Eaten’s experimental results [23] on the viscous sublayer.

The solid line results were normalized by the local properties. More precisely, Uþrms ¼ U rms

U s;local
and Y þ ¼ Y U s;local

mlocal
.

These results give the best match with the peak value of the experimental data. By using the local properties,
the Uþrms of thermal turbulent boundary layers collapses the Uþrms of incompressible turbulent boundary layers
in the log layer.

The same turbulent boundary layer flow (Tw/T1 = 1.4) was also calculated by the density-based method
[24], the semi-implicit pressure-based method [14], and the artificial damping method [8] which is an LU-
SGS scheme. Fig. 9 shows the comparison of the average residual errors versus the iteration number of
pseudo-time step loops (or inner loop) by these four different schemes. The magnitude of the average residual
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errors drops down 3 orders in just 9 steps by the present fractional step scheme. But during these 9 steps, the
decay in the order of the magnitude using the density-based method or pressure-based method is no more than
2. The convergence history shows the superior performance of the present method for the simulation of the
subsonic flows.
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5.3. Pressure solver

Since both the present method and the pressure-based method for the compressible Navier–Stokes equa-
tions need to solve a pressure Helmholtz equation, which usually takes much CPU time, the performance
of the pressure solver needed to be investigated. (Note that, in each pseudo-time step, an iteration is required
to solve the pressure Helmholtz equation.) In this study, the inexact Newton method [26] and the Red Black
Gauss Seidel method [27,28] were implemented to improve the convergence of the pressure solver.

The Red Black Gauss Seidel method is one type of classic method to solve the elliptic equations. It helps to
smooth the numerical oscillation caused by the even–odd coupling and accelerate the convergence of the ellip-
tic equation. (For details of the method, refer to [27,28].)

There are two Newton methods to solve the pressure Helmholtz equation: get accurate pressure results at
each pseudo-time step, which is the exacted Newton method, or get accurate pressure results only at each
physical time step, which is the inexact Newton method. The former takes more CPU time. However, it
may not reduce the amount of the pseudo-time steps since velocities and temperature will be updated at each
pseudo-time step and the convergence of the velocities and temperature depends on the whole system includ-
ing the momentum equations and the pressure Helmholtz equation. The best way is to converge the pressure,
velocities, and temperature simultaneously. Based on these considerations, we use the inexact Newton method
[26].

The main idea of the inexact Newton method [26] is to stop the Newton iteration if the threshold, e, is
reached or the residual error drops to gem, where em is the initial residual error of the pressure Helmholtz equa-
tion in the mth pseudo-time step and g is a small positive constant less than 1. Usually, g is from 0.01 to 0.5
and gem may be larger than the threshold e, which was 5 · 10�7 in this study. Therefore, the inexact Newton
method saves CPU time for solving the pressure Helmholtz equation.

The total CPU time ttot for each physics time step obeys ttot = M · (tpre + trest) where M is the amount of
the pseudo-time steps, tpre is the CPU time for the pressure solver, and trest is the CPU time for the rest of the
calculation. In our study, we found that the inexact Newton method can significantly reduce the CPU time.
By using the inexact Newton method, the pressure solver takes roughly 60% of the total CPU time. Other-
wise, the pressure solver will take roughly 85% of the total CPU time. Fig. 10 plots the convergent history of
the pressure Helmholtz equation, where M is the ordering of the pseudo-time step. The results show that the
residual error can converge to 30% of the initial residual error or the threshold value in just 10 iterations. In
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our study, iteration of the pressure Helmholtz equation is stopped when the residual error reaches 0.3em or
the threshold.

6. Conclusions

A novel fractional step method is proposed by this paper to decouple the temperature, velocity, and pres-
sure variances in the Jacobian matrix of the compressible Navier–Stokes solver, by which the traditional frac-
tional step algorithm has been extended to the simulation of compressible flows. In contrast to the widely used
LU-SGS scheme, the proposed method enhances the convergence speed of the residual error for the subsonic
flows, particularly for the low Mach number flows.

To accelerate the convergence, Jacobian and residual errors were multiplied by a preconditioning matrix,
which helped optimize the distribution of the eigenvalues. Combined with a proposed factorization, the Jaco-
bian matrix was further decomposed into two parts. A proper choice of the time step can guarantee that the
submatrices are positive definite regardless of the Mach number, which renders the computing robust and
efficient.

An optimal numerical boundary condition was developed in this study by reconstructing the eigenvalues
and eigenvectors of the Jacobian for which the preconditioning was taken into account.

This numerical method was applied to the simulations of a one-dimensional Euler equation with large
amplitude of acoustic waves, an adiabatic turbulent boundary layer and a turbulent boundary layer with sig-
nificant heat transfer. The numerical results show fairly good agreement with both DNS and experimental
results. The results show that, compared with the pressure-based method, the present method has a better con-
vergent route because of the better distributed eigenvalues. Compared with the density-based method, the
present method can correctly capture the large amplitude of the acoustic waves because the artificial damping
is avoided.
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Appendix

Suppose matrix A to be given by
A ¼

b c 0 0 0

d a 0 0 0

0 0 a 0 0

0 0 0 a 0

0 e 0 0 a

0BBBBBB@

1CCCCCCA

Then the eigenvalue of matrix A will be k1 ¼ aþb�f

2
; k2 ¼ aþbþf

2
; k3 ¼ a; k4 ¼ a, and k5 = a, where
f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ 4cd

q

Denote the diagonal matrix K by K ¼ diag½k1; k2; k3; k4; k5�. Hence, there exists an invertible matrix Q such
that
A ¼ QKQ�1
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It is easy to know that
Q ¼

q11 q12 0 0 0

q21 q22 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 0 0 1

0BBBBBB@

1CCCCCCA; Q�1 ¼

p11 p12 0 0 0

p21 p22 0 0 0

0 0 1 0 0

0 0 0 1 0

p51 p52 0 0 1

0BBBBBB@

1CCCCCCA

where
q11 ¼
2cd þ ða� bÞða� bþ f Þ

2de
; q12 ¼

2cd þ ða� bÞða� b� f Þ
2de

q21 ¼
b� a� f

2e
; q22 ¼

b� aþ f
2e

p11 ¼
eðb� aþ f Þ

2cf
; p12 ¼

½ða� bÞðf � aþ bÞ � 2cd�e
2cdf

p21 ¼
eða� bþ f Þ

2cf
; p22 ¼

½ða� bÞðf þ a� bÞ þ 2cd�e
2cdf

p51 ¼
�e
c
; p52 ¼

ðb� aÞe
cd
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